menu search
brightness_auto
more_vert
In a Faraday disc dynamo, a metal disc of radius R rotates with an angular velocity ω about an axis perpendicular to the plane of the disc and passing through its centre. The disc is placed in a magnetic field B acting perpendicular to the plane of the disc. Determine the induced emf between the rim and the axis of the disc.
thumb_up_off_alt 500 like thumb_down_off_alt 0 dislike

1 Answer

more_vert
Suppose a thin conducting disc of radius R is rotated anticlockwise, about its axis, in a plane perpendicular to a uniform magnetic field of induction \(\vec{B}\) (see the figure in the above Note for reference). \(\vec{B}\) points downwards. Let the constant angular speed of the disc be ω.

Consider an infinitesimal element of radial thickness dr at a distance r from the rotation axis. In one rotation, the area traced by the element is dA = 2πrdr. Therefore, the time rate at which the element traces out the area is
\(\frac{d A}{d t}\) = frequency of rotation x dA = fdA
where f = \(\frac{\omega}{2 \pi}\) is the frequency of rotation.
.’. \(\frac{d A}{d t}=\frac{\omega}{2 \pi}\) (2 πr dr) = ωr dr
The total emf induced between the axle and the rim of the rotating disc is
\(|e|=\int B \frac{d A}{d t}=\int_{0}^{R} B \omega r d r=B \omega \int_{0}^{R} r d r=B \omega \frac{R^{2}}{2}\)
For anticlockwise rotation in \(\vec{B}\) pointing down, the axle is at a higher potential.
thumb_up_off_alt 500 like thumb_down_off_alt 0 dislike

Related questions

thumb_up_off_alt 500 like thumb_down_off_alt 0 dislike
0 answers
thumb_up_off_alt 500 like thumb_down_off_alt 0 dislike
1 answer
thumb_up_off_alt 501 like thumb_down_off_alt 0 dislike
1 answer
thumb_up_off_alt 500 like thumb_down_off_alt 0 dislike
1 answer

5.2k questions

4.7k answers

75 comments

393 users

...