+1 vote
14 views

Let a ∈ (0,π/2) be fixed. If the integral $$∫ \frac{tan x + tan α}{tan x - tan α }dx =$$  A(x) cos 2α + B(x) sin 2α + C  , where C is a constant of integration, then the functions A(x) and B(x) are respectively :

(1)   x – α and loge|cos(x – α)|

(2)   x + α and loge|sin(x – α)|

(3)  x + α and loge|sin(x + α)|

(4)   x – α and loge|sin(x – α)|

| 14 views

+1 vote

Correct option is (4)   x – α and loge|sin(x – α)|

Detailed Explaination:

$$∫ \frac{tan x + tan α}{tan x - tan α} dx$$

=$$∫ \frac{\frac{\sin x }{\cos x}+ \frac{\sin α}{\cos α}}{\frac{\sin x }{\cos x} - \frac{\sin α}{\cos α}} dx$$

=$$∫ \frac{\frac{\sin x \cos α+ \sin α \cos x}{\cos α .\cos x}}{\frac{\sin x \cos α- \sin α \cos x}{\cos α .\cos x}} dx$$

=$$\int \frac{\sin x \cos α+ \sin α \cos x}{\sin x \cos α-\sin α \cos x} dx$$

$$=\int \frac{\sin( x + α )}{\sin( x - α )} dx$$

$$=\int \frac{\sin( x -α+2α )}{\sin( x - α )} dx$$

$$=\int \frac{\sin( x -α)\cos2α }{\sin( x - α )} dx+\frac{\cos( x -α)\sin2α }{\sin( x - α )} dx$$

$$= (x-\alpha )\cos2\alpha+\sin2\alpha \log_e|sin(x-\alpha)| +C$$

by Expert (10.9k points)