menu search
brightness_auto
more_vert
If the cost of bananas is increased by Rs. 10 per dozen, one can get 3 dozen less for Rs.600. Find the original cost of one dozen of bananas
thumb_up_off_alt 0 like thumb_down_off_alt 0 dislike

1 Answer

more_vert
 
verified
Best answer

Let x be the original cost of 1 dozen bananas , for Rs. 600 we  gets y dozens.  

xy =600 .................... {1}

\(y={600\over x}\) 

By increasing the cost of 1 dozen of bananas by Rs. 10 we get 3 dozen less bananas

(x +10)(y - 3)=600  ..........................{2}

Substituting the y value in (2), we get 

\((x+10)({600\over x}-3)=600\) 

\((x+10)({(600-3x)\over x})=600\)

\(6000-30x-3x^2=0\) 

\(3(x^2+10x-2000)=0\) 

\((x^2+10x-2000)=0\) 

(x+50)(x-40)=0

x=-50 or 40

Since cost of bananas cannot be negative, x = 40. So, the original cost of one dozen of bananas is Rs.40

thumb_up_off_alt 0 like thumb_down_off_alt 0 dislike

Related questions

thumb_up_off_alt 0 like thumb_down_off_alt 0 dislike
1 answer
thumb_up_off_alt 0 like thumb_down_off_alt 0 dislike
0 answers
thumb_up_off_alt 4 like thumb_down_off_alt 0 dislike
1 answer
thumb_up_off_alt 0 like thumb_down_off_alt 0 dislike
0 answers

Welcome to Brainiak.in , where you can ask questions and receive answers from other members of the community ,

There is many categories for every students  CBSE , Maharashtra board , JEE , NEET  and we will add more categories

and make brainiak one of the most loved community of students

Advertisement

Get Your advertisement on Brainiak.in Buy Adspace

3.0k questions

2.5k answers

24 comments

341 users

...