menu search
brightness_auto
more_vert
A cylinder and a cone have equal bases. The height of the cylinder is 3 cm and the area of its base is 100 cm2 .The cone is placed upon the cylinder. Volume of the solid figure so formed is 500 cm3 . Find the total height of the figure
thumb_up_off_alt 0 like thumb_down_off_alt 0 dislike

1 Answer

more_vert
 
verified
Best answer

Height of the cylinder, h = 3 cm
Let the radius of the cylinder be r cm and the height of the cone be H cm.
Area of the base of cylinder = 100 cm2

\[\therefore \pi r^2 = 100\]   .....(1) 
The volume of the solid figure = 500 cm3
∴ Volume of the cylinder + Volume of the cone = 500 cm

\[\Rightarrow \pi r^2 h + \frac{1}{3}\pi r^2 H = 500\]
\[ \Rightarrow \pi r^2 \left( h + \frac{H}{3} \right) = 500\]
\[ \Rightarrow 100\left( 3 + \frac{H}{3} \right) = 500 \left[ \text{ Using }  \left( 1 \right) \right]\]
\[ \Rightarrow 3 + \frac{H}{3} = \frac{500}{100} = 5\]
\[ \Rightarrow \frac{H}{3} = 5 - 3 = 2\]
\[ \Rightarrow H = 6 \] cm

∴ Total height of the figure = h + H = 3 + 6 = 9 cm

Thus, the total height of the figure is 9 cm.

thumb_up_off_alt 0 like thumb_down_off_alt 0 dislike

Related questions

thumb_up_off_alt 0 like thumb_down_off_alt 0 dislike
1 answer
thumb_up_off_alt 0 like thumb_down_off_alt 0 dislike
1 answer
thumb_up_off_alt 0 like thumb_down_off_alt 0 dislike
1 answer
thumb_up_off_alt 0 like thumb_down_off_alt 0 dislike
1 answer

Subscribe to our Youtube Channel

For amazing tutorial videos, podcasts, hindi tutorials

thumb_up_off_alt 0 like thumb_down_off_alt 0 dislike
1 answer
thumb_up_off_alt 0 like thumb_down_off_alt 0 dislike
1 answer

4.1k questions

3.6k answers

54 comments

379 users

...