menu search
brightness_auto
more_vert

Four identical particles of equal masses 1 kg made to move along the circumference of a circle of radius 1 m under the action of their own mutual gravitational attraction. The speed of each particle will be 

\(A) \space\sqrt{ (1+2\sqrt2)G\space \over2}\)  

\(B) \sqrt{ G(1+2\sqrt2)}\)

\(C) \sqrt { {G\over2} (2\sqrt2-1)}\)

\(D) \sqrt {{G\over2} (1+2\sqrt2)}\)

 

 

 

thumb_up_off_alt 1 like thumb_down_off_alt 0 dislike

1 Answer

more_vert
 
verified
Best answer

The correct option is A)\(\space\sqrt{ (1+2\sqrt2)G\space \over2}\) 

explaination::

24-feb-physics-shift-1-question{from -byzus} 

By resolving force F2, we get 

F1 + F2 cos 45° + F2 cos 45° = Fc

 F1 + 2F2 cos 45° = Fc

Fc = centripetal force = MV2 / R 

\({ GM^2\over(2R)^2}={ {2GM^2 \over(2R)^2} \cos 45^o}={ MV^2\over R}\) 

\({ GM^2\over 4R^2}+{ 2GM^2\over2\sqrt2R^2}={ MV^2\over R}\) 

\({GM^2\over 4R^2}+{GM\over\sqrt {2R}}=V^2\) 

\(V ={\sqrt{{ GM\over 4R}+{GM\over\sqrt{2R}}}}\) 

\(V={1\over2}{ \sqrt{{ GM\over R} [ {1+2\sqrt2}]}}\) 

now, mass=1kg and radius=1m  

\(⇒ V={1\over2}{\sqrt{ G(1+2\sqrt2)}}\)

thumb_up_off_alt 1 like thumb_down_off_alt 0 dislike

Related questions

thumb_up_off_alt 0 like thumb_down_off_alt 0 dislike
0 answers
thumb_up_off_alt 1 like thumb_down_off_alt 0 dislike
1 answer
thumb_up_off_alt 1 like thumb_down_off_alt 0 dislike
1 answer
thumb_up_off_alt 1 like thumb_down_off_alt 0 dislike
1 answer
thumb_up_off_alt 1 like thumb_down_off_alt 0 dislike
1 answer

Welcome to Brainiak.in , where you can ask questions and receive answers from other members of the community ,

There is many categories for every students  CBSE , Maharashtra board , JEE , NEET  and we will add more categories

and make brainiak one of the most loved community of students

Advertisement

Get Your advertisement on Brainiak.in Buy Adspace

3.0k questions

2.5k answers

24 comments

341 users

...