The correct answer is 1092K or 819°C
Explanation ::
We have \(V_{rms}={\sqrt{3RT\over M}}\) --at T=\(T_0 (NTP)\)
\(V_{rms}={\sqrt{3RT_0\over M}}\)
But at temperature T
\(V_{rms}={2\sqrt{3RT\over M}}\)
\(\therefore \sqrt{3RT\over M}=2{\sqrt{3RT_0\over M}}\)
\(\sqrt T = \sqrt{4T_0}\)
T= 4× 273 k
T=1092 K
Or
T=819°C