menu search
brightness_auto
more_vert

A block of mass m, lying on a smooth horizontal surface, is attached to a spring (of negligible mass) of spring constant k. The other end of the spring is fixed, as shown in the figure. The block is initally at rest in its equilibrium position. If now the block is pulled with a constant force F, the maximum speed of the block is : 

A)\(\pi F\over\sqrt{mk}\) 

B)\(2F\over\sqrt{mk}\) 

C)\(F\over\sqrt{mk}\) 

D)\(F\over\pi\sqrt{mk}\)

thumb_up_off_alt 1 like thumb_down_off_alt 0 dislike

1 Answer

more_vert
 
verified
Best answer

the correct answer is option C) \(F\over\sqrt{mk}\) 

Detailed solution:: 

Maximum speed is at mean position (equilibrium). F = kx

\(x={F\over k}\) 

\(W_F + W_{sp} = \Delta KE \) 

\(F(x) – {1\over2} kx^2={1\over2}mv^2-0\) 

\(F\left({F\over k}\right) – {1\over2} k\left({F\over k}\right)^2={1\over2}mv^2\) 

\(\implies v_{max} = {F\over\sqrt{mk}}\) 

 

thumb_up_off_alt 1 like thumb_down_off_alt 0 dislike

Related questions

thumb_up_off_alt 0 like thumb_down_off_alt 0 dislike
1 answer
thumb_up_off_alt 3 like thumb_down_off_alt 0 dislike
1 answer
thumb_up_off_alt 0 like thumb_down_off_alt 0 dislike
1 answer
thumb_up_off_alt 1 like thumb_down_off_alt 0 dislike
1 answer

4.8k questions

4.3k answers

67 comments

388 users

...