menu search
brightness_auto
more_vert

Let \([{\varepsilon _0}] \)denote the dimensional formula of the permittivity of vacuum. If M = mass, L = length, T = time and A = electric current, then:

A) \({\varepsilon _0} = \left[ {{M^{ - 1}}{L^{ - 3}}{T^2}A} \right]\)

B) \({\varepsilon _0} = \left[ {{M^{ - 1}}{L^{ - 3}}{T^4}{A^2}} \right]\)

C) \({\varepsilon _0} = \left[ {{M^1}{L^2}{T^1}{A^2}} \right]\)

D)\( {\varepsilon _0} = \left[ {{M^1}{L^2}{T^1}A} \right]\)

thumb_up_off_alt 0 like thumb_down_off_alt 0 dislike

1 Answer

more_vert
 
verified
Best answer

Correct option is B

From Coulomb's law we know,

F = \({1 \over {4\pi { \in _0}}}{{{q_1}{q_2}} \over {{r^2}}}\)

\therefore \({ \in _0} = {1 \over {4\pi }}{{{q_1}{q_2}} \over {F{r^2}}}\)

Hence, \(\left[ {{ \in _0}} \right] = {{\left[ {AT} \right]\left[ {AT} \right]} \over {\left[ {ML{T^{ - 2}}} \right]\left[ {{L^2}} \right]}}\)

= \(\left[ {{M^{ - 1}}{L^{ - 3}}{T^4}{A^2}} \right]\)

thumb_up_off_alt 0 like thumb_down_off_alt 0 dislike

Related questions

thumb_up_off_alt 0 like thumb_down_off_alt 0 dislike
1 answer
thumb_up_off_alt 1 like thumb_down_off_alt 0 dislike
1 answer
thumb_up_off_alt 0 like thumb_down_off_alt 0 dislike
1 answer

4.8k questions

4.3k answers

67 comments

387 users

...